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1. INTRODUCTION

In the last few years, second-order-closure methods have

become increasingly popular as a means of computing turbulent
shear flows. These methods differ from eddy viscosity methods

in that local turbulent transport is not assumed to be dependent

on local mean gradients in the flow but, depending on the

complexity of the model used, is a function of the development

of all the independent second-order turbulent correlations in

the flow (uju! , ~~,P , etc.) or some measure of these
quantities (Uuu - q 2k and T', for example). In order to

calculate the six components of u'u! or the turbulent energy
2 i3

k - q1/2 which is then used to estimate the components of u~u

equations for u!u! or q 2  are required. To date, these
2.J

equations have contained a scale parameter A for which, in the

purportedly more general methods, an equation is devised by

modeling. In some of the methods, the scale is measured by the

dissipation e which, at high Reynolds numbers, is proportional

to q 3/A or k3/2 /A In such methods, generally referred to

as k -e~ methods, k is used as a measure of the components of

u' u' and c is used to measure the turbulent scale A .In

other methods, called q -A methods, q is used as a measure

of u!u! and an equation for A is given explicitly. In more

complicated models where equations for all the second-order

correlations are used, it is still common practice to use an

equation which defines a single turbulent integral scale at any

point in the flow. The equation for this scale may either be

an c equation or an explicit equation for A.

That the single scale methods described above have given us

much new insight into the development of certain turbulent flows

that could not be computed accurately before is unquestioned.

However, there are flows for which such simplification is not

possible. Even for the flows for which such methods calculate

to an acceptable degree of accuracy the main features of the

flow, there are differences between computed results and actual

2



measurements that are disquieting. Furthermore, on logical or

esthetic grounds, the authors of this report have always felt a

certain discomfort, The logical argument against the scale

equations popular today is that we know that the turbulent

structures in all turbulent flows are not the same, yet we use

the same equation to compute the scale (in essence, the structure)

in all flows.

Prior to the start of the present contract, Drs. Sandri and

Donaldson were able to show that the scale equations currently in

use could not be invariant equations if the so-called "constants"

used in these equations were indeed constants.

The work being performed under the present contract is an

attempt to develop remedies for the shortcomings of present

methods. Our effort takes two different routes, one theoretical

and one experimental.

On the theoretical side, we have (a) tried to generalize
existing methods for putting scales into second-order-closure

calculations so that the equations used are invariant equations,

and (b) tried to generalize the methods so that the experiment-

ally observed fact that the scales of all correlations near a

solid surface do not behave in an identical way. These two

efforts will be discussed in more detail in Section 2.

On the experimental side, we have tried to perform an exper-

iment in the laboratory that would allow one to see the effect of

stability on changing the relative scales of different correla-

tions in a turbulent flow. Some details of our experimental

work to date will be given in Section 3.

In Section 4 we will attempt to summarize our work to date

and explain its significance. Finally, in Section 5, we shall

report briefly on meetings attended, papers presented or planned,

and, in general, on our interaction with the scientific

community.

3



2. THEORETICAL DEVELOPMENTS

General Considerations

We have obtained previously (Ref. 1) a rate equation for

the tensor scale Aij from models of the two-point correlation

tensor Ri

(x,y) - (u.(x)u!(y)) Rij( X) - uiu3(x) (1)

These models were designed to describe turbulent flows which are

far from walls or surfaces of strong stability. We shall call

these models "standard models." A code for A i has since been

implemented both in A.R.A.P. codes and in a code delivered to

NASA for its own studies of turbulent flow. The tensor scale is

defined by

A ijR(x )  3 (x ) d(
wee = - ad =1() (2)

xxc (x + . To obtain a differential

equation for Aij , we take three steps:

(I) Close the Rij equation so that when y -0. x we obtain a

standard ujus equation

(II) Substitute into the closed Rij equation the moment expan-

sion
Rij(acci) 0 2 - i 7t 2 6(") + (3)

We note that by integrating over all a , one finds

-=j Aij (4)

(III) Integrate term by term over all t A simple choice of

Ru models yields

1. Sandri, G.: A New Approach to the Development of Scale
Equations for Turbulent Flows. A.R.A.P. Report No. 302, April
1977. 4
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TF ;k  (qik + Ajk

= cl ax (qA) a (q2 A.) + v 2  A1  +

- 6(Ar kk) 2~ (5)6

where A is the single scale utilized in the standard model and

in the universal scale equation. We identify A as follows:

= A (6)

because for locally isotropic turbulence, A , 2 Lf where Lf

is the Taylor longitudinal scale, a relation supported by

analysis of a number of flows. Taking the trace of Eq. (5) and

subtracting the equation for q2 , we find the rate equation for

A , namely,

at -K iA i x4
aA + - A axuk' a

Vc A +q 2 ~A 4x i A-u- xk axk

+ ( b + c)q (7)

We note that the coefficient of the production term (which is

underlined in the above equation) depends on the flow structure

rather than being a constant as in the universal scale model.
To obtain the (approximate) relation between the trace of

the tensor scale equation and the universal A equation, we

decompose the tensor Aij into its trace and the traceless

deviatoric part 1j

5



Aij - SAkkij + Aij (8)

We then obtain an equation for Aij by substitution of Eq. (8)

into (5):

S(q~j A ~ 2 + q2(Ai+
RE +;Aik + 3X Akj +

oE . o ai.b in
26 2 2 I ~

Aak .- q2A+]

+ v ~ q[ A (q2i) - (1 - v2 A.. (9)

A first approximation to Eq. (9) is obtained by introducing an
"anisotropy parameter" a defined by

A. aA( (10)

Substitution of Eq. (10) into (9) yields (Ref. 2)

30+ a-a (-)( + q am.
at k 2 4 nukak /;u xnuij uiuj

VCqA oA -oL qA L +

-x a(k +x L xk +(1

In the universal scale equation, the "constant" which scales the

production term in the equation is generally taken to be

approximately 0.35. Thus, if we set

2. Sandri, G.: Recent Results Obtained in the Modeling of
Turbulent Flows by Second-Order Closure. AFOSR-TR-78-0680,
February 1978. 6



-2 -1) =0.35 (12)

we find that this choice corresponds to a = 2.5 The super-

equilibrium solution of Eq. (11) for plane shear flows gives
a = 2.7 which is in good agreement with Eq. (12). For this

approximation, we find, after substituting Eqs.(i0) and (12)
into (8)

All A22  A33 . 0.8 A12  A2 1
A = 1 0.8 -- = -- = -0.5 (13)

Note that A12  is not a length but the (angular-averaged)
integral scale of the correlation component (uj(x)uj(k)) which
is typically negative in plane shear flows. A marked advantage

of the method described above to obtain an approximate solution
for Ai lies in the fact that the trace part of Aij is not
forced to equilibrium. This feature is essential if agreement
with the extensive experiments carried out at Johns Hopkins
(Ref. 3) on homogeneous shear turbulence is to be obtained,

because in these experiments A (and q2) grow indefinitely.
We obtained a strong test of our model by comparing an exact
solution of the coupled u'u! and Aij equations for homogen-

eous shear with the Johns Hopkins data. We write the velocity
field as (U(y),00) and substitute into the u'u equation'. ij

and into Eq. (5) the forms

uiu! =U. e+2aU't e+aU't
' 'ij f Lij (14)

The factor of 2 in the growth rate of the Reynolds tensor is due
to its quadratic nature.

It is most interesting that the forms (Eq. (14)) result in
a cancellation of the exponentials in spite of the nonlinearity

3. Harris, V.G., Graham, J.A.H., and Corrsin, S.: Further
Experiments in Nearly Homogeneous Turbulent Shear Flow.
J. Fluid Mech. 81, 1977, pp. 657-688.

7
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of the equations, and the tensor equations become algebraic and

can be solved explicitly. We find, in particular, the following

expressions for the Bradshaw number B, the Corrsin parameter C,

the ratio of turbulent to shear time scales 1/a, and the growth

rate a contained in Eq. (14)

luju2I 1 7(1 - 2b)(b + vc2 )
= +3 (15)

= uju) 3(b + vc 2 )C =-(16)
=1 =7) l+ 4b + 6 vc2

1 / 1 -2b (17)r _. + 2Vc2 (+Vc2)

Vc 2  -2b

vc2 3 ( Vc 2) (18)

A good fit to the energy and scale behavior of grid turbulence,

analyzed as if perfectly isotropic, gives vc2 = 0.07, b = 0.125

implying

C = 0.5 , B = 0.18 (19)

C is in excellent agreement with experiment. The growth rate

also compares well with the data. The model further predicts

A 2.5 , -A=20.19 (20)

which could eventually be checked. These values are in rough

agreement with the a approximation, Eq. (13).

From several computer integrations of the coupled Aij and

u j  which were carried out with a wide variation in initial

conditions, it appears that our solution, Eqs. (14) - (18), is

8



a "convective superequilibrium" which represents the asymptotic
long-time solution. The ratio a is close to one for the best

experimental runs as well as from Eq. (17), suggesting that fine-
tuning the experimental initial conditions would lead to a more

rapid onset of the asymptotic state than was measured experi-

mentally and thus would enhance the amount of experimental data
that could be used to check our theory. The qualitative

physical picture that emerges for homogeneous shear flows is as
follows: (a) during the initial transient, if qo/Ao -- U'

the shear brings the turbulence by "sudden distortion" up to

convective equilibrium (q/A * U'); (b) if qo/Ao >> U' , the
turbulence decays in a "grid"-like manner to the convective

equilibrium (q/A - U'). There, a merging mechanism takes over

(a multi-layer Brown-Roshko effect) so that eddies fold with
each other, making larger ones indefinitely (i.e., as long as

the imposed shear provides the energy to sustain the process).
Once the merging process takes over, the eddy structure remains
fixed and exhibits highly directional integral scales (Eq. (20)).

A further test of our modeling consists in directly compa-
ing the structure predicted by the Rij model with experimental

data. The simplest flow on which detailed structural information
(Energy Spectra) is available is grid turbulence. A first cut at

the analysis can be made by assuming that grid turbulence is
isotropic. This assumption is in fact not correct, and a more
general framework is needed in order to understand the full

details of the measured spectra. A remarkable result can be

demonstrated, however. For high turbulence Reynolds numbers

(qA/v large), the energy dissipation is given experimentally by

2 3
- 2b - , b 0.125 (21)at

A theorem due to G.I. Taylor (Ref. 4) states on the other hand

4. Batchelor, G.K.: The Theory o6 Homogeneous Tutbulence,
Cambridge University Press, 1953, p. 100.

9



2 2

R-=-2v- (22)
at

The two statements of dissipation are equivalent if the follow-

ing relation (Glushko (Ref. 5)) is assumed

2 A A2

A2  (23)a + b qA (

V

We demonstrate below that a simple model of cascading (needed to

obtain closure of the Ri equation) implies (23). We introduce

wave number space by

4D (k) = R eik. d (24)
813

and the three-dimensional spectrum, E , by the Karman-Howarth

relation
( = (i - k.k.) 

(25)

The normalization is chosen so that

2
- J E(k) dk (26)

The R,, equation becomes

3E = T(k) - 2k2E (27)
t

where the transfer function T which represents cascading (more

properly, in our view, eddy size rearrangement) satisfies

f T(k) dk = 0 (28)

i.e., eddy size rearrangement does not change the energy. A

5. Glushko, G.S.: Turbulent Boundary Layer on a Flat Plate in
an Incompressible Fluid. Bull. Acad. Sciences, USSR, Mech.
Series No. 4, 1965, pp. 13-23.

10



simple model for T , which has derivatives only (no integrals*)

both in t space and for R ,is

1 'S 15F

The coefficients have been chosen so that for Kolmogoroff equili-

brium, i.e., T = 0 , the only solution is

E = const k-5 / 3

and, in addition, Eq. (28) is satisfied. To obtain Eq. (23),

we consider a steady source at k

E + k + 2vk2E [a Re X- 2 
1]

=Q6(k- k) Re IA (30)
0 0 V

The exact solution is

__o eK H__oo__3_(31

AE0  0 (k/k)5 /
3

with H the Heaviside function and

k2 A2 k2 X2

K0 0 (32)
aRe

We now impose, as integral constrains, the definitions of

q2/2, A , and A

* For purposes of calculational feasibility, it is most desir-
able that the model equations be differential. If both O
and Rij are to be governed by differential equations, theAi all

terms in the modeling of T must be of the form ankn n E/akn
A general consequence of such assumptions is that O(k) will
exhibit a region where * is proportional to a power of k

11



" (k) dk EokoIl(K) (33)
fo

2

IT 9 A FEdk = EoI 3(K) (35)

where we have introduced three convenient integrals, II , 12

and 13 , and the abbreviation

E - eK (36)(q/A)ck 0

After some manipulation, we find

A2  e-K
A2 K e aRe (37)

X7- 2 1,(K)

Numerical evaluation of II  then gives

2 A2

2 2  
(38)

V a7- + i Re

Comparing Eq. (38) with (23), we obtain

2
a -- f 2.47 b (39)

3

It is interesting to note that the empirically accepted values

of a lie between 3.25 and 2.5. We note here a general result,

namely that a model of the eddy size rearrangement term in the

Rii equation determines the asymptotic model in the uiu'

equation. This is not obvious when one merely considers the

12
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contraction of the Rij equation into the uju equation.

From dimensional arguments, it can be shown that a family of

models should yield the Glushko relation and, in addition, that

if the spectrum has the Kolmogoroff form

E----- A c2/3 - 5 / 3  for k > k0  (40)Re-w

then the dissipation parameter b is given by

5 i33/2 A 3 /2 = 0.121 A 3 /2  (41)

Experimentally, A z 1 ; thus, Eq. (41) yields a value for b

that is close to the generally accepted value of b , i.e.,

0.125

The derivation of the scale equation, the agreement of the

model with homogeneous shear flows, and the derivation of the
Glushko relation are, in our opinion, strong arguments in

support of developing a full model for Rij

Boundary Conditions on Pressure Fluctuations

An essential feature of second-order closure is that all

terms that contain pressure fluctuations are expressed in terms

of velocity fluctuations. It is therefore impossible to

prescribe boundary conditions on the pressure fluctuations once

the equations are closed. It is thus to be expected that, to

calculate the details of certain flows near walls or regions of

strong stability, models which use a single large scale A will

require generalization. We have chosen the extreme case of

atmospheric free convection as a flow suitable for investigating

such generalizations because such flows exhibit strong disparities

of scale (the strongest known to us) both in laboratory and

atmospheric experiments. Furthermore, the wealth of experimental

data that have been accumulated over the years gives a firm basis

13
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for comparing models with observations. The most striking feature

of the data is the fact that,while several variables scale very

well with the Monin-Obukhov length parameter L

3
L u* 2 uw (42)

Kg w'T'

the horizontal variance scales only with the much larger length

zi  the mixing layer height. In (42) we have used the mean

temperature of the surface layer To , the gravitational constant

g , and von KArman's constant K ( .39). We generalize the

standard Reynolds stress model by introducing, in addition to the

scale A = A Akk , a vertical scale Av which we identify as

A = const giAijgj (43)

We impose the requirement that the generalized model should reduce

to the standard one when A - A - 0 because empirically thev
difference A - A is an inverse measure of height above theV

ground. We have considered several alternative models and

concluded that the most satisfactory fit to the data can be

described by the following models:

1. For the pressure-rate of strain correlation, we add to the

tendency-towards-isotropy term generally used a "pancaking"term

I, ( u a u'.~ 2 6j

x. ax. 1  -I (

- ~ F,3(~ -Dgiwjw3 j 6 - 9 ~j-~~) (44)

where gi is the unit vector normal to the ground and D is a

free parameter. Fp is defined as

F 1- 1 + cl Al (45)

14



We refer to this quantity A/qF as the eddy turnover time. Inp

(45) we have introduced a tapering factor C which is given by
2/3

- -(Av/A I ) 2/3- 0 (46)

AV+A

2. The dissipation of the Reynolds tensor is assumed isotropic

2v u' 2bFd
v q(

where the modifier of the dissipation time scale is

F ~ A (Aiiw' w ,) (48)
Fd =1 - + c2 g. (48)

v q

3. For the thermal equations, we adopt a parallel strategy.

The two relevant models are the "pressure scrambling" of the heat

flux

- T' (49)

and the dissipation of the temperature variance

-2k KaT La --) =" 2bs T'2  (50)

We have not fully developed the tensor scale equation for the

model, so that as a first approximation we prescribe the two
scales within the surface layer as follows. For L < 0

A = az AV M Qz (51)
(az/czi) + e-YZ/l) ,

where a - .65(58992), c - .2 ,y - 3 ; while for L > 0 (stable

side)

15
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A - min(az, .2Zi) , Av - min(z, .2L) (52)

It will be noted that this modeling which was adopted after

many analytical and numerical studies had been carried out adds

four new parameters to the calculation of atmospheric flows. The

parameters are c1 
= 2 , c2 % 2 , D a .58 , and y - 3

The results of the superequilibrium limit are gratifying.

We have solved the rather intricate algebraic equations with a

computer. We show in Figure 1 the behavior of

aH = (u' = (v) ; the scaling with zi is clear and effect-

ively independent of z (z/L = -7 was chosen). It is worth

noting that we have obtained systematic improvements relative to

the standard model on the vertical variance (w'w')k (Figure 2),

the horizontal heat flux u'T' ,and the temperature variance
T 2  The behavior of

and Oh - zu. a (53)
+- zh w'T'

remains essentially that given by the standard model. These

results encourage our confidence in second-order closure in

general for we have obtained substantial agreement comparing a
second-order-closure model with experimental data on free convec-

tions which some individuals had considered unfeasible.

16
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3. EXPERIMENTAL RESULTS

Apparatus

The vortex tube facility at A.R.A.P., in which we are

trying to measure the effect of swirl on turbulent structure,

will be briefly described. A more complete description can be

found in a previous AFOSR technical report (Ref. 6). The test

section has an annular cross section with inner and outer radii

of 2.54 cm and 21.88 cm, respectively. The length of the tube

can be varied by adding or subtracting sections, and the maximum

downstream distance from the beginning of the tube proper is

approximately 45 diameters. A schematic of the apparatus is

shown in Figure 3. The inlet section, shown in Figure 4, allows

swirl to be introduced by the setting of 32 equally spaced vanes.

The flow then undergoes a contraction of about 25:1 and generates

an approximate potential vortex flow (tangential velocity propor-

tional to I/radius).

The vortex tube facility has been upgraded in a number of

ways. First, a system of hot wire probe supports was designed

and fabricated which allow the measurement of two-point velocity

correlations. At present, radial separations are possible, and a

support system which will allow azimuthal separations is being

designed. Second, the analog-to-digital data acquisition system

is fully operational. Hot wire anemometer signals are trans-

mitted from the vortex tube to the computer room via cable and

then pass through a differential amplifier which removes all

line noise. The A/D system allows data to be collected on up to

16 channels at a maximum sampling rate of 105 hz. Data taken

with this system can be stored on tape to be analyzed later. A

set of analysis programs has been written which allow the compu-

tation of power spectra, autocorrelations, single-point velocity

correlations (Reynolds tensor components), and two-point

6. Bilanin, A.J., Snedeker, R.S. and Sullivan, R.D.: Experi-
mental and Theoretical Study of Aircraft Vortices.
AFOSR-TR-75-0664. February 1975.
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Swirl vanes (32)

Entrance baffle

Vane angle A

t

---I

Section A- A
Center tube

Figure 4. Detail of entrance section showing swirl vanes
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correlations. The analysis program has been set up so that all
the relevant statistics from a typical two-point correlation

experiment can be computed overnight. Finally, modifications

have been made to the vortex tube inlet section. Initial

measurements showed that a great deal of unsteadiness existed
in the flowfield. This was apparent in power spectra which

exhibited a large amount of energy at very low frequencies
(- 0.1 hz to 1 hz). This unsteadiness was finally traced to

nonuniformities in the inlet section and was remedied by placing

a sheet of k" polyurethane foam around the inlet section. This
served to make the inflow more uniform and damp any large-scale

motions. Further work will most likely be necessary on the inlet

and contraction section to improve the vortex tube flow.
Measurements for the no-swirl case show that the flow is not

precisely symmetric about the centerline and differences of about

5% to 10% exist for the mean flow. In the case of high swirl

flow, we have reason to believe azimuthally propagating disturb-

t ances are present. We suspect that these problems are associated
with the contraction section, and design modifications are being

considered.

Mean Velocities

A great deal of data has been collected for the no-swirl

case, and we are beginning to generate a database for swirling

flows. In the case of no-swirl flow, we have been able to

compare our results to the literature on pipe flow. Mean

velocity profiles for three vane angle settings are presented in

Figure 5(a-c) where the downstream distance is approximately

30 diameters. Note that cylindrical coordinates are used so

that i i% the downstream velocity and ;j is the tangential

velocity. (The radial flow u was too small to be accurately

resolved.) The maximum value of w in all three cases was

approximately 2500 cm/sec (- 80 ft/sec) and all velocities were

*normalized by w;max .The Reynolds number based on wmax and

22



the outer radius R0 was approximately 3.7 x 10 (Note, we

base Re on the radius rather than the diameter. This is

because the presence of the central pipe limits the largest eddy

to a size of Ro  as opposed to 2Ro .) The no-swirl case

presented in Figure 5(a) shows a typical ;7(r) profile and a

comparison of the profile in the outer region from r/Ro = 0.55

to 1.0 agrees well with pipe flow data at comparable Reynolds

numbers (Refs. 7, 8). The case when the swirl vanes were set at

twenty degrees (cv = 200) is presented in Figure 5(b) and shows

t a w(r) profile which is substantially flatter than the no-swirl

case. This can be attributed to increased mixing due to the

presence of a tangential velocity and its associated deformation

(r ( . The tangential velocity for this case is relatively

week (- 0.06 w max) and approximately constant as a function of

radius. The =v 400 case, presented in Figure 5(c), shows a

w(r) field similar to the previous case, while the v(r) field

differs in magnitude and structure. In this case, vr(r) is

somewhat closer to a potential vortex in the region from
r/R = 0.30 to r/Ro = 0.60, while an approximate rigid-body

rotation region (v c r) can be seen developing from r/Ro =

0.70 to r/R = 0.95

A comparison between the present results and those obtained

under our previous AFOSR contract (Ref. 6) show some interesting

differences. In the previous work, w(r) profiles for the no-

swirl case were much flatter than seen currently. Also, the

v(r) field decayed more rapidly with downstream distance. The

previous study showed the following behavior: z/D = 15 ,

1 i/r ; z/D = 30 , v constant ; z/D = 45 , v - r The

present study shows that v is more like a potential vortex at

7. Schlichting, H. Boundary LayeL Theory, McGraw Hill, New York,
1968, pp. 560-564.

8. Laufer, J.: The Structure of Turbulence in Fully Developed
Pipe Flows. National Advisory Committee for Aeronautics
Report No. 1174, 1954.
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1Lv=400 . z/D =30 than in the previous study. These differ-
ences are due to the modification of the inlet section. The

unsteadiness present without the polyurethane sheet resulted in

a flow which was "stirred" more relative to the present arrange-
ment. One of the discrepancies reported previously between the

numerical modeling of this flow and the experimental observations
t concerned a too rapid change of the flow from vortex-like to

solid body-like flow. Given the present experimental results,
numerical computations using our present closure model should

provide better agreement with experiment. Such numerical

computations will be performed in the near future.

Turbulent Fluctuations

Turbulent velocity fluctuations were measured as a function

of radius at z/D =30 and for three vane angle settings. The

results are presented in Figure 6(a-c) where the rms fluctuations

were normalized by w max .Again, we note that cylindrical

coordinates are used where 1;" w'2  , = iiv Ll

are the root mean square downstream, tangential, and radial

velocity fluctuations, respectively. The acz= 00 case is

presented in Figure 6(a) and the behavior of the fluctuations is

very typical and predictable. The w ' fluctuations receive

energy directly from the deformation associated with -. while

&l and v~ receive their energy indirectly through the

"tendency to isotropy" terms in the equations of motion. Near

the center of the annular region, all three components are

approximately equal. The shape of the curves and their relative

magnitudes (W > ve > 7) agree well with the measurements of
Laufer (Ref. 8). The =v 200 case is presented in Figure 6(b)

F where the most notable feature is the maximum in u'near
r/R0 = 0.35. Although v' fluctuations now receive energy

directly from the - deformation, they are still smaller than

w This is due to the very weak tangential velocity. The

av 400 case, presented in Figure 6(c), shows that v'
frr/R0 < 0.40 ,and this is due to the large deformation
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associated with v and the direct production of ?" As the

outer wall is approached, the deformation associated with

diminishes and w' > ' . Again, a maximum value for ' is
seen near r/Ro = 0.30. There are theoretical reasons to expect
a region where u' > w' = v' in vortex flows, but these results

cannot yet support such theoretical ideas. As previously
mentioned, an azimuthally propagating disturbance appears to be
present in the high swirl case, and more will be said about this

when power spectra are presented. At present, we do not know
whether the maximum in u' is associated with this disturbance

or represents a fundamental feature of vortex flows.

Two-Point Correlations

Two-point velocity correlations are presented in Figure

7(a-c) for the previously discussed cases. The fixed probe was
positioned at r/R0 = 0.45 and the movable probe could be posi-
tioned from r/R0 = 0.4575 to 0.80, thus providing a separation
distance, ' = Ar/R o , from 0.075 to 0.35. The data are

presented for w' , , and u in Figures 7(a), (b), and (c),

respectively, and each figure has results from the three vane
angles. The av = 00 shows the expected behavior for correla-

tions, and the results are in fair agreement with recent two-

point measurements (Ref. 9). The negative portion of the w'

correlation is to be expected as the separation vector is
perpendicular to the velocity fluctuation. Therefore, this
represents a "transverse" correlation, and it is well known that

such correlations have negative values at large separations.

The av W 200 results show a general increase in the correlation
curves, implying a greater length scale of the turbulence for

this case relative to av = 00. The changes in the correlation

from av = 00 to av - 200 are not very dramatic and one might

9. Hassan, H.A., Jones, B.G., and Adrian, R.J.: Measurements
and Axisymmetric Model of Spatial Correlations in Turbulent

* Pipe Flow. AIAA Paper No. 79-1562, presented at AIAA Fluid and
Plasma Dynamics Conference, 1979.
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argue that this is because the tangential velocity is very weak.
The civ = 400 case does show a very dramatic change from the
previous two cases. The w' correlation decreases more rapidly
than in the previous two cases and possesses a very large

negative region. The v' correlation also decreases more
rapidly than in the previous two cases. The G; correlation
decreases much more slowly for the civ =400 case than for the

cases civ = 0* and 200. These results have just been obtained
and we have yet to ascertain whether this behavior reflects some

fundamental features of vortex flow or is associated with azi-

muthally propagating disturbances. The difference between the
two swirling flow cases may well be "real" given that the

deformation associated with V_ in the civ = 400 case is far

greater than in the civ =200 case.

Power Spectra

Power spectra were obtained for all three velocity compon-
ents aL the three vane angle settings. For the sake of brevity,
we present only the u' spectra at r/Ro = 0.45 in Figure 8(a-c).

The power spectra have been scaled by ./4u7 to yield a quantity

with dimensions of length, while the frequency has been scaled by

27/,;7 to yield a quantity with dimensions of inverse length. This
is a standard way of treating power spectra, and originates from
the fact that a turbulent length scale can be measured by extra-

polating 4' to zero frequency. The ci - 00 case presented in

* Figure 8(a) shows a power spectra which agrees well with pipe

flow results in the literature (Refs. 8, 9). The curve k4' is

also plotted along with 4' and such a curve allows one to see
where the maximum energy in the spectrum occurs. The a v -200

* case is presented in Figure 8(b) and one sees that the extrapola-

ted value of 0 to zero frequency gives a length scale greater

than that obtained in the civ M 00 case. This is consistent with

the two-point correlation measurements which implied a greater
* length scale for the civ = 200 case. The peak in the ko4 curve

occurs at a comparable position in the two cases, but a greater
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contribution at low frequencies can be seen in the a v 200
case. The av 40 case is presented in Figure 8(c) and one

t notices the increased energy at low frequencies. Again, the
k$ curve peaks at a value similar to the previous two cases

but now a sizable contribution to the energy occurs at a some-
what lower frequency. By computing a "mean flow frequency,"

* f V/2rrr, we find that the low frequency peak in k occurs

at approximately 4F . This suggests that an azimuthally
propagating disturbance with an azimuthal wave number of 4
(m = 4) is present. We have a number of thoughts about this
disturbance. One is that we are seeing a harmonic of an m = 1

disturbance. Such a disturbance would arise from whatever is

causing the asymmetry in the no-swirl case. Another is that we
may be seeing an m = 4 disturbance originating from support

rods in the contraction section. Alternately, we may be

observing a true instability of the flowfield. Flows which
have both axial and azimuthal mean velocities can be unstable

to nonaxisymmetric disturbances.

Our future plans are to identify this disturbance. If
the disturbance is associated with structures in the contraction
section, we will attempt to eliminate them. On the other hand,
if they are true instabilities, they merit study. Additional

data similar to that presented here will be collected. This
will enable us to measure the various turbulent length scales

in the flow and have a data set which can be compared with our

theoretical ideas and models of turbulent vortex flow.
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4. SUMMARY

In this annual report on the status of our two-year program

of theoretical and experimental studies aimed at improving

computational models of turbulent flows, we have described some

new methods for treating the effects of structure in turbulent

flows through the use of a tensor scale equation and the two-

point correlation tensor equation from which our tensor scale is

derived.

We have shown that the tensor scale equation, when solved

in conjunction with the Reynolds stress tensor equation, yields

results that are in general agreement with the experimental

results given in Reference 3 for homogeneous turbulent shear

flow and for grid turbulence. The results enable one to under-

stand the way in which homogeneous shear flows in general will

reach an asymptotic state which was, we believe, just achieved

at the largest times studied by Harris, Graham and Corrsin

(Ref. 3).

We have shown that the kind of structure that exists in a

turbulent flow, as distinct from the general scale of such

structures, approaches a form determined by local equilibrium

conditions rapidly, compared to changes in the mean motion. On

the other hand, the scale of such structure evolves at essen-

tially the same rate at which the overall mean motion is

changing. In mathematical terms, the above statements are

related, for example, to the fact that no equilibrium solution

can be found for the mean scale A = Aii/3 but equilibrium

solutions can be found for the ratios Ai /AU

If one considers the two-point correlation tensor equation

for R ii( X,), we have shown but not yet exploited that
R (x,r) has no equilibrium solution but the deviatoric tensor

act 1
Dij (R, R ij (,") -, 6 ijR (xr) does have equilibrium

solutions. Further, we have shown that for a differential

modeling of the eddy-size rearrangement tensor, a dissipation

model is deduced. It has the form that we are currently using
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in our Reynolds stress closure model, which is that originally

proposed by Glushko.

In addition to the above, a generalization of our single

scale second-order models to better handle the problem of free

convective turbulence has been developed from the general notion

of a tensor scale. While this work has just been completed and

has yet to be generalized for application to other flows, it has

yielded very good agreement with experimental data on free

convective flows.

On the experimental side, we have begun to obtain useful

data from our vortex tube experiments. For the remainder of

this contract, our primary emphasis will be placed on obtaining

a well-documented set of data on the effect of swirl on turbulent

structure in as clean an environment as we are able to produce.
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5. INTERACTION WITH SCIENTIFIC COMMUNITY

Talks, Publications, and Papers in Preparation

In July of 1979, Dr. Donaldson presented some of the

theoretical results outlined in this report in an invited pre-

sentation at the Second Symposium on Turbulent Shear Flows at

Imperial College, London, England.

The results obtained to date are too extensive to be

acceptable in a journal article of normal length. At present,

we plan to publish our results in several papers that will be

prepared by Drs. Sandri, Cerasoli, and Donaldson during the

coming year.

Professionals Associated with Research Effort

Dr. Coleman duP. Donaldson Co-Principal Investigators
Dr. Guido Sandri
Dr. Carmen Cerasoli
Dr. W. Stephen Lewellen
Dr. Peter Mansfield (no longer with A.R.A.P.)
Mr. Roger D. Sullivan

Interactions

Our new tensor scale model is now up and running on the

large computers at NASA/Ames, and a close liaison will continue

between A.R.A.P. and the personnel at Ames who are engaged in

the computation of complex turbulent flows.
The modeling of free convective flow that has been recently

developed is now being used by the Navy for the calculation of

the behavior of planetary boundary layers. The incorporation of

the new model into atmospheric codes and the use of these codes

to study atmospheric behavior is being supported by the Naval Air

Systems Command.
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